AP Computer Science

Prerequisites

Our AP Computer Science class (taught in the spring semester) is a continuation and extension of the material taught in the fall class – Intro to Computer Programming. The fall class is taught at a much more rudimentary level where students have time to experiment with the language. The class starts with Alice (a graphical programming environment), and continues to cover the basic facets of programming. The class covers variables, classes, control statements and arrays. Most of class is structured on Java Applets where students can get graphical and interactive quickly. Long periods of time are spent applications and games.

All students are required to take that class before the AP or they must have some prior programming experience.

Class Web page

All notes, activities, quizzes and tests are available on the class web page - http://myonlinegrades.com/apjava. All example activities below are available for examination on the web page.
Gridworld

We introduce Gridworld in the beginning of AP Java. I have written an activity that simplifies Gridworld and use it as an intro to classes that we do during the first week. Also in that week we act out the role-play written by David Levine, which is a great active representation of classes and computer science. Throughout the course of the semester we will look at brief sections of the code (such as when cover random numbers we look at how some bugs move randomly). In the final two weeks of the class we review Gridworld with respect to possible AP free response questions. .

Course Resources:

Java Software Solutions for AP Computer Science A, J. Lewis, W. Loftus, and C. Cocking, 2nd Edition, 2007, Prentice Hall.

AP JAVA, Addison Wesley’s Review for the AP Computer Science Exam in Java, S. Horwitz, L Sudol, Addison Wesley, 2005.

AP GridWorld Case Study

Class web page - http://myonlinegrades.com/apjava/

Unit 1 - Weeks 1-3 Basics of programming

We review material from the fall semester (hardware, software, classes, primitive data, Strings, conditional statements). All of these topics they have been introduced to before and have used extensively, so we proceed rather quickly.

We also will do a roleplay introducing Gridworld and then we do a few exercises in Gridworld using it as an intro to classes.

We discuss the process of compiling and executing a program. We also touch on bases and networking. Moral responsibility is a focus.

Students are introduced to the Scanner class for user input and also the Math class for random values.

	Book
	Topic
	Sample Activity

	Ch1
	Hardware and software
	Take apart a computer

	Ch2
	Intro to Classes
	Role play and intro to Gridworld

	Ch2
	Primitive Data
	How many numbers between 1 and 1000 are divisible by 4 or 7 but not both?

	Ch2
	Strings
	Create a method that will count the vowels in a String

	Ch3
	Conditional Statements
	Using random. Use random to roll two die. If they get a total of 7 or 11, tell them they are winners, if not, tell them they are losers.

Unit 2 - Weeks 4-7 Loops, Methods and classes

We continue to review loops and methods. Most of this is review, but students are given much more difficult examples to develop there skills. Students learn how to write more complex classes and declare objects of those classes. We spend considerable time looking at how object references are dealt with.

In particular we look briefly at GridWorld as an example of random and class references.

To do the activities, students learn how to use file input to get data from a file.

	Book
	Topic
	Sample Activity

	Ch3
	Loops
	How many palindromes are there in the English language?

	Ch4
	Methods
	Where have you seen methods in the real world?

	Ch4
	Designing and using classes
	Create and model a bank with accounts.

	Ch5
	Static modifier
	Modify your bank account so that it has a unique id.

	Ch5
	Interfaces
	When did we see interfaces before? (Applets)

Unit 3 - Weeks 8-9 Arrays and arraylists

This short unit (timed with the end of the quarter) examines arrays and ArrayLists. Students have spent a good deal of time on arrays in the first quarter and were well aware of there shortcomings. We review arrays and extend their application with arrays of objects, which is challenging for some students. We also discuss different sorting algorithms and program quick-sort, selection-sort, and merge-sort. Subsequently we examine ArrayLists and use them in a number of situations.

This unit we add the ability to output to files with the BufferedWriter class.

	Book
	Topic
	Sample Activity

	Ch6
	Arrays
	Create a list of all National League baseball players and their salaries.

	Ch6
	Searching/sorting arrays
	Sort the player’s salaries from least to greatest. Find all players making more than $5 million.

	Ch6
	ArrayLists
	Create and model a bank with accounts.

Unit 4 - Weeks 10 Inheritance, Polymorphism, Recursion

This unit was completely new for all students as we do not cover much of inheritance or advanced object oriented ideas in the intro class of the fall. We discuss inheritance as a nature idea seen in the “real” world.

	Book
	Topic
	Sample Activity

	Ch7
	Inheritance
	Create a CDAccount, FreeChecking, StockAccount

	Ch7
	Abstract Classes
	Examine a project of a workplace environment with employees.

	Ch7
	Polymorphism
	A bank needs to be able to handle all sorts of different accounts – how do they deal with it?

	Ch8
	Recursion
	Examine the “Tower of Hanoi” puzzle

Unit 5 – Week 11-12, Review and Case Study

This is crunch time as we bring it all together to prepare for the AP. We continue to look at Gridworld more indepth. We review multiple-choice questions and free response questions as well as a small aspect of the case study.

	
	Topic
	Sample Activity

	
	Case Study
	Role-play

	
	Case study in-depth
	Activity questions sets from AP Central

	
	Sample questions
	Daily Practice questions graded as quizzes and tests

Unit 6 – Week 13-16, Summative

Students have approximately 15 class days to complete a massive project of their design. They will use all of the knowledge they have learned throughout the year to create an applet, or application that will be a fully working game or application. Past examples are a Doom game; a text based role-playing game and a tic-tac-toe game based on recursion.

Correlation to AP Topic Outline
	I. Object-Oriented Program Design

The overall goal for designing a piece of software (a computer program) is to correctly solve the given problem. At the same time, this goal should encompass specifying and designing a program that is understandable, can be adapted to changing circumstances, and has the potential to be reused in whole or in part. The design process needs to be based on a thorough understanding of the problem to be solved.

	A. Program design

	1. Read and understand a problem description, purpose, and goals.
	Units 1,2,4

	2. Apply data abstraction and encapsulation.
	Units 1,2

	3. Read and understand class specifications and relationships among the classes (‘‘is-a,’’ ‘‘has-a’’ relationships).
	Unit 4

	4. Understand and implement a given class hierarchy.
	Unit 4

	5. Identify reusable components from existing code using classes and class libraries.
	Unit 4

	B. Class design

	1. Design and implement a class.
	Unit 2

	3. Choose appropriate data representation and algorithms.
	Units 3

	4. Apply functional decomposition.
	Units 4

	5. Extend a given class using inheritance.
	Units 4

	II. Program Implementation

The overall goals of program implementation parallel those of program design. Classes that fill common needs should be built so that they can be reused easily in other programs. Object-oriented design is an important part of program implementation.

	A. Implementation techniques

	1. Methodology

	a. Object-oriented development
	Unit 1,2

	b. Top-down development
	Unit 2,4

	c. Encapsulation and information hiding
	Unit 2

	d. Procedural abstraction
	Unit 1,2

	B. Programming constructs

	1. Primitive types vs. objects
	Unit 1

	2. Declaration

	a. Constant declarations
	Unit 1

	b. Variable declarations
	Unit 1

	c. Class declarations
	Unit 2

	d. Interface declarations
	Unit 4

	e. Method declarations
	Unit 2

	f. Parameter declarations
	Unit 2

	3. Console output (System.out.print/println)
	Unit 1

	4. Control

	a. Methods
	Unit 2

	b. Sequential
	Unit 1

	c. Conditional
	Unit 1

	d. Iteration
	Unit 2

	e. Recursion
	Unit 4

	C. Java library classes (included in the A-level (AP Java Subset)
	Units 2 and 4

	III. Program Analysis

The analysis of programs includes examining and testing programs to determine whether they correctly meet their specifications. It also includes the analysis of programs or algorithms in order to understand their time and space requirements when applied to different data sets.

	A. Testing

	1. Test classes and libraries in isolation.
	Unit 2

	2. Identify boundary cases and generate appropriate test data.
	Unit 2

	3. Perform integration testing.
	Unit 4,6

	B. Debugging

	1. Categorize errors: compile-time, run-time, logic.
	Units 1

	2. Identify and correct errors.
	Units 1-6

	3. Employ techniques such as using a debugger, adding extra output statements, or hand-tracing code.
	Units 1-6

	C. Understand and modify existing code
	Units 1-6

	D. Extend existing code using inheritance
	Units 4

	E. Understand error handling

	1. Understand runtime exceptions.
	Units 1

	F. Reason about programs

	1. Pre- and post-conditions
	Units 1

	2. Assertions
	Unit 1

	G. Analysis of algorithms

	1. Informal comparisons of running times
	Unit 3

	2. Exact calculation of statement execution counts
	Unit 3

	H. Numerical representations and limits

	1. Representations of numbers in different bases
	Unit 1

	2. Limitations of finite representations (e.g., integer bounds, imprecision of floating-point representations, and round-off error)
	Units 1 and 1

	IV. Standard Data Structures

Data structures are used to represent information within a program. Abstraction is an important theme in the development and application of data structures.

	A. Simple data types (int, boolean, double)
	Unit 1

	B. Classes
	Units 1,2 and 4

	C. One-dimensional arrays
	Unit 3

	V. Standard Algorithms

Standard algorithms serve as examples of good solutions to standard problems. Many are intertwined with standard data structures. These algorithms provide examples for analysis of program efficiency.

	A. Operations on A-level data structures previously listed

	1. Traversals
	Unit 3

	2. Insertions
	Unit 3

	3. Deletions
	Unit 3

	B. Searching

	1. Sequential
	Unit 3

	2. Binary
	Unit 3

	C. Sorting

	1. Selection
	Unit 3

	2. Insertion
	Unit 3

	3. Mergesort
	Unit 3

	VI. Computing in Context

A working knowledge of the major hardware and software components of computer systems is necessary for the study of computer science, as is the awareness of the ethical and social implications of computing systems. These topics need not be covered in detail but should be considered throughout the course.

	A. Major hardware components

	1. Primary and secondary memory
	Unit 1

	2. Processors
	Unit 1

	3. Peripherals
	Unit 1

	B. System software

	1. Language translators/compilers
	Unit 1

	2. Virtual machines
	Unit 1

	3. Operating systems
	Unit 1

	C. Types of systems

	1. Single-user systems
	Unit 1

	2. Networks
	Unit 1

	D. Responsible use of computer systems

	1. System reliability
	Unit 1

	2. Privacy
	Unit 1

	3. Legal issues and intellectual property
	Unit 1

	4. Social and ethical ramifications of computer use
	Unit 1

